
fox-it.com
1

Dirk-jan Mollema

- Dirk-jan Mollema

- Lives in The Netherlands

- Hacker / Red Teamer / Researcher @ Fox-IT since 2016

- Author of several (Azure) Active Directory tools
- Mitm6
- ldapdomaindump
- BloodHound.py
- aclpwn.py
- Co-author of ntlmrelayx
- ROADtools

- Blogs on dirkjanm.io
- PrivExchange

- Tweets stuff on @_dirkjan

Whoami

• What are conditional access policies?

• Basic policies – MFA

• Enumerating policies

• Primary Refresh Tokens

• Device Compliancy

Talk outline

3

No 1337 h4x 0-day bypasses in this talk, focus on understanding the

inner workings and on improving security together.

Disclaimer

4

• Azure AD

• Identity platform for Office 365, Azure Resource Manager, and

other Azure things

• Also identity platform for any first/third party app you want to

integrate with it

• This is not about Azure infrastructure/VMs/etc

Terminology

5

• Who can access what from where and how

• Evolved from binary “MFA or no MFA” switch

• Imo single most important Azure AD security feature

• Will play an even more important role in the next few years

What are conditional access policies

6

• Any member of the group “Needs MFA” has to use MFA to sign in.

• Managers can only sign in from a compliant Windows 10 device.

• Users are not allowed to sign in from Android

Examples

7

Basic policies:

Multi Factor Authentication

8

Is MFA the magic solution to everything?

9

current

Attacker economics: bikes

10

• Password spraying is extremely low cost/effort and scales great

• MFA adds effort/cost

• As long as there are orgs without MFA and ROI is high there, no

need to account for MFA with attacks

Attacker economics: public cloud

11

• MFA is one part of the protection

• Attackers can phish MFA as well

• Eventually attacks will evolve beyond credential stuffing and MFA

won’t be sufficient anymore.

• Still: pretty please do enable MFA if you don’t have it enabled yet.

Is MFA the magic solution?

• Per user-MFA

• All or nothing (every sign-in), with options to except IP ranges

• Conditional Access MFA

• MFA can be enforced depending on conditions

Ways to set MFA

Per-user MFA

Per-user MFA artifacts

• Adding a user gives them the “Active Authentication Administrator”

role

• Role does not give any privileges

• Removing the role does not remove the MFA requirement

• Can be queried by any user

Per-user MFA (tl;dr)

Conditional access policies MFA

• The best policy is one that applies to:

• All clients

• All apps

• Selectively applying policies to different apps may leave room for

bypass

Conditional Access – best practices

MFA exclusion examples

Device platform is based on user agent

Client apps condition

From browser

With “Microsoft Teams”

So much Teams

Public apps to use with predefined Office 365

permissions

• No default permissions

• May still be some public apps which have been granted privileges

in the tenant

• Interesting corner case: Application proxy

Non-Office 365 apps

Application proxy default API permission available

• No default permissions to access custom apps from public OAuth

clients

• Default impersonation permission exposed

• If user consent to permissions is enabled, can grant permissions

themselves to existing application to access the app proxy

Application proxy permissions

Direct flow (browser) triggers MFA

• Applications have “Default” permissions, but can also request

permissions dynamically at runtime

• For any public application, you can request them yourself (provided

user consent is enabled)

• No admin approval required

Identity platform dynamic consent

Permission request URL

https://login.microsoftonline.com/iminyour.cloud/oauth2/v2.0/authorize?response_type=

code&client_id=1fec8e78-bce4-4aaf-ab1b-5451cc387264&scope=https://appserver-

iminyourcloud.msappproxy.net//user_impersonation&redirect_uri=https://login.microsoft

online.com/common/oauth2/nativeclient&state=3f8b08ef-0a79-4a0e-a90b-

d617ff74933e

Return code

https://login.microsoftonline.com/common/oauth2/nativeclient?code=0.AAAAj_KHYn9PIk

OWUahpfY_hvHiO7B_kvK9KqxtUUcw4cmR0AAA.AQABAAIAAAB2UyzwtQEKR7-

rWbgdcBZI94848C1c4WucKs89QGEMCcJu_QYZCex1lahxBSGyD69K03dUolh8Orllpys

Bvc8pDS4dBqWxswU-qI-vxuhi5nvFSNFmZc0f7eeutY31_pBnxc5WxV33vplP-

LdPV_Jras2cKE_28iATz5GMKhpe5Usjs94l96sqpUSl2RceyH5nuOJ1HKyM9RVuflxNaxe

sy6Mzxrso8FNHvrp4eypclq6bnmOscltjHhmKhfShc-

ZzqJ93EjG0CUK40l5DDBPcX_k_LUilHbfrcwXTtMrH60djEZ6boSJLOvXodVIXcNTkuAh

WQhyAsj7byLr276OmyGVnI7Bz7mmmy1W_pT0kBs5CiYaK4FFiI184nVGFO2e8Z3_oBb

2gEHaqdM1uzAGgO0c68EpIlIIXSyya8_7Raf0pwBkID-

vZRo6nZDE2N3nU6U9Jv_8C3V4z3iiDxbO2QVVL-71p0AmMa-

H7_R9qY9OADaocYl4Wbs9FDNgwA0SRwszIHI0ahkDEOlMoBYHiJq9YaQP-

FnQRj9uDGQ6J8AAr6UvYDiXrevY_vj2NwU3Lo0Tvjs1WQq-

KR_aa4hrkFKXdyOsPFBX7HBc-

WdClXZbOxV7oGTUpW7Z6xZL2r6Yq2HrSoQT_Sd0_vyrfSWzvGner4CKtw2SXcwq5UrbI

1iAA&state=3f8b08ef-0a79-4a0e-a90b-d617ff74933e&session_state=3a42bd40-b996-

46f8-a42d-156b59a62138

Some POC code to convert codes to tokens

Add token to request

Request kind of succeeds

• Kind of a corner case

• Requires specific policies

• Requires user consent to be enabled (not much of a default

anymore)

• Still cool technique (I think) involving OAuth2 token magic

Application proxy app specific bypass

Enumerating policies

• Identify by trying:

• MFASweep

by Beau Bullock

Identifying MFA/policy bypass angles

https://github.com/dafthack/MFASweep/

• roadrecon plugin policies

Explore them with credential access

Primary refresh tokens

• MFA required everywhere

• Let’s ignore phishing with MFA for a bit

• No legacy auth/exceptions etc

Let’s assume the policies are perfect

• Endpoints are trusted

• Can be either:

• Hybrid joined

• Joined to Azure AD

• Registered in Azure AD (workplace joined)

• Don’t want to enter credentials all the time, so SSO magic comes

into play

Back to the endpoint

• Cryptographic trust established between device and Azure AD

• Allows for the exchange of longer lived SSO tokens: PRT

• Token secrets are stored in TPM if present

Primary Refresh Token

• Any app in the user session can request SSO data

• Via RPC or helper applications (emulating Chrome)

• References:

• RPC Approach (by Lee Christensen):

https://posts.specterops.io/requesting-azure-ad-request-tokens-

on-azure-ad-joined-machines-for-browser-sso-2b0409caad30

• Pretend-to-be-Chrome Approach with ROADtoken:

https://dirkjanm.io/abusing-azure-ad-sso-with-the-primary-refresh-

token/

Primary Refresh Token SSO

• Initialize flow on attacker host

• Request SSO token on victim host

ROADtoken

• Use PRT cookie to authenticate, get token

• Token claims:

PRT Auth

• Policies can require a compliant /

hybrid joined device

• Compliant:

• Managed by Intune (Win10/mobile)

• In line with Intune polices

• Hybrid:

• Joined to AD and Azure AD

(managed by AD GPO’s)

Advanced things – Device state

• Passes this policy because it

originated from the SSO token

ROADtoken sign-in

• Refresh token does not expire if handled correctly

Persistent mail access

Slightly modified version of https://github.com/mdsecactivebreach/o365-attack-toolkit

• PRT is tied to device

• If device is disabled, PRT is disabled, but refresh tokens keep

working unless a policy is triggered that requires compliant/hybrid

device.

• Refresh token refresh will re-evaluate access policies, so if done

from different IP may deny you or trigger other polices

PRT and device state

• Change user password

• Disable device in Azure AD (and reinstall)

• Revoke refresh tokens

In case of device breach

• Few theoretical observations:

• If admin, it should be possible to extract the PRT if not in TPM

• Maybe some techniques to interact with PRT even if in TPM

• Fake your own device registration, obtain PRT?

PRT as admin

• More research in combination with Benjamin Delpy (@gentilkiwi)

• Built a combination of Mimikatz and ROADtools to obtain and use

the PRT

PRT as admin

Mimikatz magic

PRT with TPM

lsass TPM

Mimikatz magic with TPM

Use derived key and context to recreate PRT cookie

• If you’re admin on a device with a PRT, you can steal the PRT if it’s

not in TPM

• If it is in the TPM you can still acquire context/derived key

combinations which allow you to use the PRT without the device

• PRT / Cloud credentials not covered by Credential Guard

• Longer version:

https://dirkjanm.io/digging-further-into-the-primary-refresh-token/

PRT as admin TL;DR

Device compliancy

• Can you fake enrollment? Yes!

• Awesome research by Nestori Syynimaa

• AADInternals module

• Allows for device registration and faking compliancy

Getting your own PRT with a “compliant” “device”

Registering our own device

Getting and using a PRT

Refs: https://o365blog.com/post/prt/#creating-your-own-prt

https://o365blog.com/post/mdm/

• Registering device does not require MFA by default

• Allows for upgrading password-only access to compliant device

access

• Policies often require either MFA or a compliant device

Policy upgrade

• Worry about the other stuff first

• Defending the endpoint becomes more important

• Restrict who can join/register devices

• Require MFA to register a device

• Do monitor for odd device joins

PRT and device registration abuse – Blue Side

• Conditional Access is tricky.

• Try to specify policies as broad as possible, with exceptions where

absolutely needed only.

• Understand what each policy does and what the risks are of

exceptions.

• Even if policies are not perfect, CA can be great for monitoring

weird bypass attempts and acting early.

Closing thoughts

